941 resultados para dryland rivers, gene flow, genetic diversity, hydrological variability, Neosilurus hyrtlii


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coastal lagoons represent habitats with widely heterogeneous environmental conditions, particularly as regards salinity and temperature,which fluctuate in both space and time. These characteristics suggest that physical and ecological factors could contribute to the genetic divergence among populations occurring in coastal lagoon and opencoast environments. This study investigates the genetic structure of Holothuria polii at a micro-geographic scale across theMar Menor coastal lagoon and nearbymarine areas, estimating the mitochondrial DNA variation in two gene fragments, cytochrome oxidase I (COI) and 16S rRNA (16S). Dataset of mitochondrial sequences was also used to test the influence of environmental differences between coastal lagoon andmarine waters on population genetic structure. All sampled locations exhibited high levels of haplotype diversity and low values of nucleotide diversity. Both genes showed contrasting signals of genetic differentiation (non-significant differences using COI and slight differences using 16S, which could due to different mutation rates or to differential number of exclusive haplotypes. We detected an excess of recent mutations and exclusive haplotypes, which can be generated as a result of population growth. However, selective processes can be also acting on the gene markers used; highly significant generalized additive models have been obtained considering genetic data from16S gene and independent variables such as temperature and salinity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Glenelg spiny freshwater crayfish Euastacus bispinosus is a large endangered freshwater invertebrate of southeastern Australia that has suffered major population declines over the last century. Disjunct populations in the state of South Australia are in a particularly critical condition, restricted to a few isolated rising-spring habitats and in an ongoing state of decline. We assessed genetic diversity and gene flow within E. bispinosus across its current range using allele frequencies from 11 nuclear microsatellite loci and DNA sequence data from a single mitochon -drial locus (cytochrome oxidase subunit I). Populations were characterized by low levels of genetic diversity and found to be highly structured, with gene flow restricted both within and across catchments, highlighting the species' vulnerability to further habitat fragmentation and the importance of managing environmental threats on local scales across its current natural range. South Australian populations were characterized by critically low levels of genetic diversity generally, highlighting their potential vulnerability to localized extinction. Holistic conservation efforts are necessary to conserve populations, including local habitat management and, potentially, translocations to increase genetic diversity and evolutionary potential, and reduce possible inbreeding effects and the threat of extinction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hedgerows represent important components of agri-environment landscapes that are increasingly coming under threat from climate change, emergent diseases, invasive species and land use change. Given that population genetic data can be used to inform best-practice management strategies for woodland and hedgerow tree species, we carried out a study on hawthorn (Crataegus monogyna Jacq.), a key component of hedgerows, on a regional basis using a combination of nuclear and chloroplast microsatellite markers. We found that levels of genetic diversity were high and comparable to, or slightly higher than, other tree species from the same region. Levels of population differentiation for both sets of markers, however, were extremely low, suggesting extensive gene flow via both seed and pollen. These findings suggest that a holistic approach to woodland management, one which does not necessarily rely on the concept of “seed zones” previously suggested, but which also takes into account populations with high and/or rare chloroplast (i.e. seed-specific) genetic variation, might be the best approach to restocking and replanting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

'Fire mosaics' are often maintained in landscapes to promote successional diversity in vegetation with little understanding of how this will affect ecological processes in animal populations such as dispersal, social organization and re-establishment. To investigate these processes, we conducted a replicated, spatiotemporal landscape genetics study of two Australian woodland lizard species [Amphibolurus norrisi (Agamidae) and Ctenotus atlas (Scincidae)]. Agamids have a more complex social and territory structure than skinks, so fire might have a greater impact on their population structure and thus genetic diversity. Genetic diversity increased with time since fire in C. atlas and decreased with time since fire in A. norrisi. For C. atlas, this might reflect its increasing population size after fire, but we could not detect increased gene flow that would reduce the loss of genetic diversity through genetic drift. Using landscape resistance analyses, we found no evidence that postfire habitat succession or topography affected gene flow in either species and we were unable to distinguish between survival and immigration as modes of postfire re-establishment. In A. norrisi, we detected female-biased dispersal, likely reflecting its territorial social structure and polygynous mating system. The increased genetic diversity in A. norrisi in recently burnt habitat might reflect a temporary disruption of its territoriality and increased male dispersal, a hypothesis that was supported with a simulation experiment. Our results suggest that the effects of disturbance on genetic diversity will be stronger for species with territorial social organization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High gene flow is considered the norm for most marine organisms and is expected to limit their ability to adapt to local environments. Few studies have directly compared the patterns of differentiation at neutral and selected gene loci in marine organisms. We analysed a transcriptome-derived panel of 281 SNPs in Atlantic herring (Clupea harengus), a highly migratory small pelagic fish, for elucidating neutral and selected genetic variation among populations and to identify candidate genes for environmental adaptation. We analysed 607 individuals from 18 spawning locations in the northeast Atlantic, including two temperature clines (5-12 °C) and two salinity clines (5-35‰). By combining genome scan and landscape genetic analyses, four genetically distinct groups of herring were identified: Baltic Sea, Baltic-North Sea transition area, North Sea/British Isles and North Atlantic; notably, samples exhibited divergent clustering patterns for neutral and selected loci. We found statistically strong evidence for divergent selection at 16 outlier loci on a global scale, and significant correlations with temperature and salinity at nine loci. On regional scales, we identified two outlier loci with parallel patterns across temperature clines and five loci associated with temperature in the North Sea/North Atlantic. Likewise, we found seven replicated outliers, of which five were significantly associated with low salinity across both salinity clines. Our results reveal a complex pattern of varying spatial genetic variation among outlier loci, likely reflecting adaptations to local environments. In addition to disclosing the fine scale of local adaptation in a highly vagile species, our data emphasize the need to preserve functionally important biodiversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The theoretical impacts of anthropogenic habitat degradation on genetic resources have been well articulated. Here we use a simulation approach to assess the magnitude of expected genetic change, and review 31 studies of 23 neotropical tree species to assess whether empirical case studies conform to theory. Major differences in the sensitivity of measures to detect the genetic health of degraded populations were obvious. Most studies employing genetic diversity (nine out of 13) found no significant consequences, yet most that assessed progeny inbreeding (six out of eight), reproductive output (seven out of 10) and fitness (all six) highlighted significant impacts. These observations are in line with theory, where inbreeding is observed immediately following impact, but genetic diversity is lost slowly over subsequent generations, which for trees may take decades. Studies also highlight the ecological, not just genetic, consequences of habitat degradation that can cause reduced seed set and progeny fitness. Unexpectedly, two studies examining pollen flow using paternity analysis highlight an extensive network of gene flow at smaller spatial scales (less than 10 km). Gene flow can thus mitigate against loss of genetic diversity and assist in long-term population viability, even in degraded landscapes. Unfortunately, the surveyed studies were too few and heterogeneous to examine concepts of population size thresholds and genetic resilience in relation to life history. Future suggested research priorities include undertaking integrated studies on a range of species in the same landscapes; better documentation of the extent and duration of impact; and most importantly, combining neutral marker, pollination dynamics, ecological consequences, and progeny fitness assessment within single studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding dispersal traits and adaptive potential is critically important when assessing the vulnerability of freshwater species in highly modified ecosystems. The present study investigates the population genetic structure of the Murray crayfish Euastacus armatus in the southern Murray–Darling Basin. This species has suffered significant population declines in sections of the Murray River in recent years, prompting the need for information on natural recruitment processes to help guide conservation. We assessed allele frequencies from 10 polymorphic microsatellite loci across 20 sites encompassing the majority of the species’ range. Low levels of gene flow were observed throughout hydrologically connected waterways, but significant spatial autocorrelation and low migration rate estimates reflect local genetic structuring and dispersal limitations, with home ranges limited to distances <50-km. Significant genetic differentiation of headwater populations upstream of barriers imposed by impoundments were also observed; however, population simulations demonstrate that these patterns likely reflect historical limitations to gene flow rather than contemporary anthropogenic impacts. Dispersal limitations, coupled with its biological traits, suggest that local populations are vulnerable to environmental disturbance with limited potential for natural recolonisation following population decline. We discuss the implications of these findings in the context of managing the recovery of the species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background: The amount and structure of genetic diversity in dessert apple germplasm conserved at a European level is mostly unknown, since all diversity studies conducted in Europe until now have been performed on regional or national collections. Here, we applied a common set of 16 SSR markers to genotype more than 2,400 accessions across 14 collections representing three broad European geographic regions (North+East, West and South) with the aim to analyze the extent, distribution and structure of variation in the apple genetic resources in Europe. Results: A Bayesian model-based clustering approach showed that diversity was organized in three groups, although these were only moderately differentiated (FST=0.031). A nested Bayesian clustering approach allowed identification of subgroups which revealed internal patterns of substructure within the groups, allowing a finer delineation of the variation into eight subgroups (FST=0.044). The first level of stratification revealed an asymmetric division of the germplasm among the three groups, and a clear association was found with the geographical regions of origin of the cultivars. The substructure revealed clear partitioning of genetic groups among countries, but also interesting associations between subgroups and breeding purposes of recent cultivars or particular usage such as cider production. Additional parentage analyses allowed us to identify both putative parents of more than 40 old and/or local cultivars giving interesting insights in the pedigree of some emblematic cultivars. Conclusions: The variation found at group and sub-group levels may reflect a combination of historical processes of migration/selection and adaptive factors to diverse agricultural environments that, together with genetic drift, have resulted in extensive genetic variation but limited population structure. The European dessert apple germplasm represents an important source of genetic diversity with a strong historical and patrimonial value. The present work thus constitutes a decisive step in the field of conservation genetics. Moreover, the obtained data can be used for defining a European apple core collection useful for further identification of genomic regions associated with commercially important horticultural traits in apple through genome-wide association studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For study the genetic diversity of Caspian brown trout population in five rivers in the southern part of Caspian Sea in Iran 182 number generators in the fall and winter of 1390 were collected in Chalus, Sardab Rud, Cheshmeh Kileh, Kargan Rud and Astara rivers. Then about 3-5 g of soft and fresh tissue from the bottom fin fish removed and were fixed in ethanol 96°. Genomic DNA was extracted by using ammonium acetate, then quantity and quality of the extracted DNA were determined by using spectrophotometry and horizontal electrophoresis in 1% agarose gel. The polymerase chain reaction was performed by using 16 SSR primers and sequencing primers (D-Loop) and the quality of PCR products amplified by SSR method were performed by using horizontal electrophoresis in 2% agarose gel. Alleles and their sizes were determined by using vertical electrophoresis in 6% polyacrylamide gel and silver nitrate staining method. Gel images were recorded by gel documentarian, the bands were scored by using Photo- Capt software and statistical analysis was performed by using Gene Alex and Pop Gene software. Also the PCR sequencing products after quality assessment by usinghorizontal electrophoresis in 1.5% agarose gel were purified and sent to South Korea Bioneer Corporation for sequencing. Sequencing was performed by chain termination method and the statistical analysis was performed by using Bio- Edit, Mega, Arlequin and DNA SP software. The SSR method, 5 pairs of primers produced polymorphic bands and the average real and effective number of alleles were calculated 5.60±1.83 and 3.87±1.46 in the Cheshmeh Kileh river and 7.60±1.75 and 5.48±1.32 in the Karganrud river and the mean observed and expected heterozygosity were calculated 0.44 ±0.15 and 0.52 ±0.16 in the Cheshmeh Kileh river and 0.50 ±0.11 and 0.70±0.13 in the Karganrud river. Analysis of Molecular Variance results showed that significant differences in genetic diversity between and within populations and between and within individuals in the studied rivers (P<0.01). The sequencing method identified 35 different haplotype, the highest number of polymorphic position (251) and haplotype (14) were observed in the Chalus river. The highest mean observed number of alleles (2.24±0.48) was calculated in the Sardabrud river, the highest mean observed heterozygosity (1.00±0.03) was calculated in the Chalus river and the highest mean nucleotide diversity (0.13±0.07) was observed in the Sardabrud river and mean haplotype diversity was obtained (1) in three studied rivers. The overall results show that there are no same population of this fish in the studied rivers and Karganrud and Chalus rivers in the SSR and sequencing methods had the highest levels of genetic diversity.